Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Front Immunol ; 12: 701295, 2021.
Article in English | MEDLINE | ID: covidwho-1359190

ABSTRACT

The current pandemic of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has already become a global threat to the human population. Infection with SARS-CoV-2 leads to a wide spectrum of clinical manifestations. Ocular abnormalities have been reported in association with COVID-19, but the nature of the impairments was not specified. Here, we report a case of a female patient diagnosed with glaucoma on re-hospitalization for ocular complications two months after being discharged from the hospital upon recovery from COVID-19. Meanwhile, the patient was found re-positive for SARS-CoV-2 in the upper respiratory tract. The infection was also diagnosed in the aqueous humor through immunostaining with antibodies against the N protein and S protein of SARS-CoV-2. Considering the eye is an immune-privileged site, we speculate that SARS-CoV-2 survived in the eye and resulted in the patient testing re-positive for SARS-CoV-2.


Subject(s)
Aqueous Humor/virology , COVID-19/pathology , Glaucoma/pathology , Reinfection/pathology , Aged , COVID-19/complications , Eye/pathology , Eye/virology , Female , Glaucoma/complications , Humans , SARS-CoV-2/isolation & purification
3.
Future Virol ; 2021 May.
Article in English | MEDLINE | ID: covidwho-1285243

ABSTRACT

Background: Limited details are available regarding the vertical transmission potential of COVID-19 infection in pregnant women. The authors' current study aimed to report the vertical transmission potential of COVID-19 infection in a woman pregnant with twins. Case description: The authors report the case of a 27-year-old woman infected with SARS-CoV-2. The patient was pregnant with dichorionic diamniotic fraternal twins and admitted to Renmin Hospital of Wuhan University, Wuhan, China. After undergoing a cesarean section, the patient gave birth to premature twins, who tested positive for COVID-19 infection. Interpretation: Findings from this case suggest a possibility of intrauterine infection caused by vertical transmission in a woman infected with COVID-19.

4.
Sci Rep ; 11(1): 5975, 2021 03 16.
Article in English | MEDLINE | ID: covidwho-1137818

ABSTRACT

Since the emergence of SARS-CoV-2, numerous studies have been attempting to determine biomarkers, which could rapidly and efficiently predict COVID-19 severity, however there is lack of consensus on a specific one. This retrospective cohort study is a comprehensive analysis of the initial symptoms, comorbidities and laboratory evaluation of patients, diagnosed with COVID-19 in Huoshenshan Hospital, Wuhan, from 4th February to 12th March, 2020. Based on the data collected from 63 severely ill patients from the onset of symptoms till the full recovery or demise, we found not only age (average 70) but also blood indicators as significant risk factors associated with multiple organ failure. The blood indices of all patients showed hepatic, renal, cardiac and hematopoietic dysfunction with imbalanced coagulatory biomarkers. We noticed that the levels of LDH (85%, P < .001), HBDH (76%, P < .001) and CRP (65%, P < .001) were significantly elevated in deceased patients, indicating hepatic impairment. Similarly, increased CK (15%, P = .002), Cre (37%, P = 0.102) and CysC (74%, P = 0.384) indicated renal damage. Cardiac injury was obvious from the significantly elevated level of Myoglobin (52%, P < .01), Troponin-I (65%, P = 0.273) and BNP (50%, P = .787). SARS-CoV-2 disturbs the hemolymphatic system as WBC# (73%, P = .002) and NEUT# (78%, P < .001) were significantly elevated in deceased patients. Likewise, the level of D-dimer (80%, P < .171), PT (87%, P = .031) and TT (57%, P = .053) was elevated, indicating coagulatory imbalances. We identified myoglobin and CRP as specific risk factors related to mortality and highly correlated to organ failure in COVID-19 disease.


Subject(s)
C-Reactive Protein/analysis , COVID-19/pathology , Myoglobin/analysis , Aged , Aged, 80 and over , Biomarkers/blood , COVID-19/complications , COVID-19/mortality , COVID-19/virology , Comorbidity , Female , Humans , Male , Middle Aged , Multiple Organ Failure/etiology , Retrospective Studies , Risk Factors , SARS-CoV-2/isolation & purification , Severity of Illness Index , Survival Analysis , Thorax/diagnostic imaging , Tomography, X-Ray Computed , Troponin I/blood
5.
Virol Sin ; 36(5): 869-878, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1117772

ABSTRACT

Understanding the persistence of antibody in convalescent COVID-19 patients may help to answer the current major concerns such as the risk of reinfection, the protection period of vaccination and the possibility of building an active herd immunity. This retrospective cohort study included 172 COVID-19 patients who were hospitalized in Wuhan. A total of 404 serum samples were obtained over six months from hospitalization to convalescence. Antibodies in the specimens were quantitatively analyzed by the capture chemiluminescence immunoassays (CLIA). All patients were positive for the anti-SARS-CoV-2 IgM/IgG at the onset of COVID-19 symptoms, and the IgG antibody persisted in all the patients during the convalescence. However, only approximately 25% of patients can detect the IgM antibodies, IgM against N protein (N-IgM) and receptor binding domain of S protein (RBD-IgM) at the 27th week. The titers of IgM, N-IgM and RBD-IgM reduced to 16.7%, 17.6% and 15.2% of their peak values respectively. In contrast, the titers of IgG, N-IgG and RBD-IgG peaked at 4-5th week and reduced to 85.9%, 62.6% and 87.2% of their peak values respectively at the end of observation. Dynamic behavior of antibodies and their correlation in age, gender and severity groups were investigated. In general, the COVID-19 antibody was sustained at high levels for over six months in most of the convalescent patients. Only a few patients with antibody reducing to an undetectable level which needs further attention. The humoral immune response against SARS-CoV-2 infection in COVID-19 patients exhibits a typical dynamic of acquired immunity.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Convalescence , Hospitalization , Humans , Immunity, Humoral , Retrospective Studies , Spike Glycoprotein, Coronavirus
6.
Saudi J Biol Sci ; 28(3): 2029-2039, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1039567

ABSTRACT

INTRODUCTION: Researchers worldwide with great endeavor searching and repurpose drugs might be potentially useful in fighting newly emerged coronavirus. These drugs show inhibition but also show side effects and complications too. On December 27, 2020, 80,926,235 cases have been reported worldwide. Specifically, in Pakistan, 471,335 has been reported with inconsiderable deaths. PROBLEM STATEMENT: Identification of COVID-19 drugs pathway through drug-gene and gene-gene interaction to find out the most important genes involved in the pathway to deal with the actual cause of side effects beyond the beneficent effects of the drugs. METHODOLOGY: The medicines used to treat COVID-19 are retrieved from the Drug Bank. The drug-gene interaction was performed using the Drug Gene Interaction Database to check the relation between the genes and the drugs. The networks of genes are developed by Gene MANIA, while Cytoscape is used to check the active functional association of the targeted gene. The developed systems cross-validated using the EnrichNet tool and identify drug genes' concerned pathways using Reactome and STRING. RESULTS: Five drugs Azithromycin, Bevacizumab, CQ, HCQ, and Lopinavir, are retrieved. The drug-gene interaction shows several genes that are targeted by the drug. Gene MANIA interaction network shows the functional association of the genes like co-expression, physical interaction, predicted, genetic interaction, co-localization, and shared protein domains. CONCLUSION: Our study suggests the pathways for each drug in which targeted genes and medicines play a crucial role, which will help experts in-vitro overcome and deal with the side effects of these drugs, as we find out the in-silico gene analysis for the COVID-19 drugs.

7.
Eur J Pharmacol ; 886: 173447, 2020 Nov 05.
Article in English | MEDLINE | ID: covidwho-1005871

ABSTRACT

Coronavirus Disease 2019 (COVID-19) caused by a Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) was first reported in Wuhan, China at the end of December 2019. SARS-CoV-2 is a highly pathogenic zoonotic virus and closely related to the Severe Acute Respiratory Coronavirus (SARS-CoV) and Middle East Respiratory Syndrome Coronavirus (MERS-CoV). The COVID-19 was declared as a global pandemic due to its high infectiousness, and worldwide morbidities and mortalities. The Chinese scientists at the start of the outbreak reported genome sequences, which made the characterization of glycoproteins and other structural proteins possible. Moreover, researchers across the world have widely focused on understanding basic biology, developing vaccines, and therapeutic drugs against the COVID-19. However, until now, no promising treatment options, as well as vaccines, are available. In this review, we have described SARS-CoV-2's genome, transmission, and pathogenicity. We also discussed novel potential therapeutic agents that can help to treat the COVID-19 patients.


Subject(s)
Coronavirus Infections/therapy , Pneumonia, Viral/therapy , Animals , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Coronavirus Infections/genetics , Disease Susceptibility , Genomics , Humans , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Pneumonia, Viral/genetics
8.
J King Saud Univ Sci ; 33(1): 101255, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-956005

ABSTRACT

The ongoing SARS-CoV-2 pandemic infecting millions of people globally has given rise to serious public health threats. The need for early detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in asymptomatic pregnant women is compelling to detect vertical transmission timely. Here, 11 SARS-CoV-2 asymptomatic pregnant cases from Wuhan China were investigated. All the patients were initially tested negative for SARS-CoV-2 on RT-PCR, so a chest CT scan was performed. Also, serum antibody (IgM and IgG) titers were estimated. CT scan of patients revealed typical abnormalities related to SARS-CoV-2, indicating ground-glass opacity and infection lesions suggesting viral pneumonia. Elevated IgM and IgG antibodies levels (p < 0.001) were also noticed in infected patients. Hence, CT imaging and serum antibody response are valuable in the early detection of SARS-CoV-2 in asymptomatic pregnant patients. These might serve as prognostic markers for healthcare professionals, in RT-PCR negative patients, to assess the effect of given treatment by chest CT.

10.
Saudi Pharm J ; 28(8): 1004-1008, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-623558

ABSTRACT

COVID-19 has created havoc in the world by causing thousands of demises in a short period of time. Up till now, several attempts have been made for potential therapeutics against SARS-COV2. In this retrospective, single-center study, we extracted data from 122 COVID-19, RT-PCR confirmed patients. who were treated with a new treatment strategy of lianhuaqingwen with Arbidol Hydrochloride. The patients were either asymptomatic or had mild symptoms for COVID-19 disease. Of 122 patients 21 (17.21%) patients developed severe conditions of COVID-19, while total 111 (90.9%) experienced mild symptoms such as fever in 93 (76.22%) patients, cough in 23 (20.17%) and muscle pain were observed in total 8 (7%) patients. Furthermore our newly applied drugs combination (Lianhuaqingwen and Arbidol Hydrochloride) showed therapeutic effects in 5-7 days in patients with mild symptoms with 98% recovery rate. These results indicate that COVID-19 patients with mild symptoms can be treated with Lianhuaqingwen and Arbidol Hydrochloride. However, extensive clinical investigations are required to confirm the effectiveness of these drugs.

11.
J Biomol Struct Dyn ; 39(11): 4089-4099, 2021 07.
Article in English | MEDLINE | ID: covidwho-610639

ABSTRACT

An rare pandemic of viral pneumonia occurs in December 2019 in Wuhan, China, which is now recognized internationally as Corona Virus Disease 2019 (COVID-19), the etiological agent classified as Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2). According to the World Health Organization (WHO), it has so far expanded to more than 213 countries/territories worldwide. Our study aims to find the viral peptides of SARS-COV-2 by peptide mass fingerprinting (PMF) in order to predict its novel structure and find an inhibitor for each viral peptide. For this reason, we calculated the mass of amino acid sequences translated from the SARS-CoV2 whole genome and identify the peptides that may be a target for inhibition. Molecular peptide docking with Moringa oleifera, phytochemicals (aqueous and ethanolic) leaf extracts of flavonoids (3.56 ± 0.03), (3.83 ± 0.02), anthraquinone (11.68 ± 0.04), (10.86 ± 0.06) and hydroxychloroquine present therapy of COVID-19 in Pakistan for comparative study. Results indicate that 15 peptides of SARS-CoV2 have been identified from PMF, which is then used as a selective inhibitor. The maximum energy obtained from AutoDock Vina for hydroxychloroquine is -5.1 kcal/mol, kaempferol (flavonoid) is -6.2 kcal/mol, and for anthraquinone -6 kcal/mol. Visualization of docking complex, important effects are observed regarding the binding of peptides to drug compounds. In conclusion, it is proposed that these compounds are effective antiviral agents against COVID-19 and can be used in clinical trials.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 Drug Treatment , Moringa oleifera , Anthraquinones , Flavonoids/pharmacology , Humans , Hydroxychloroquine , Peptides , RNA, Viral , SARS-CoV-2
13.
J Clin Microbiol ; 58(5)2020 04 23.
Article in English | MEDLINE | ID: covidwho-108853

ABSTRACT

The new decade of the 21st century (2020) started with the emergence of a novel coronavirus known as SARS-CoV-2 that caused an epidemic of coronavirus disease (COVID-19) in Wuhan, China. It is the third highly pathogenic and transmissible coronavirus after severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in humans. The source of origin, transmission to humans, and mechanisms associated with the pathogenicity of SARS-CoV-2 are not yet clear, however, its resemblance to SARS-CoV and several other bat coronaviruses was recently confirmed through genome sequencing-related studies. The development of therapeutic strategies is necessary in order to prevent further epidemics and cure infections. In this review, we summarize current information about the emergence, origin, diversity, and epidemiology of three pathogenic coronaviruses with a specific focus on the current outbreak in Wuhan, China. Furthermore, we discuss the clinical features and potential therapeutic options that may be effective against SARS-CoV-2.


Subject(s)
Betacoronavirus/genetics , Betacoronavirus/pathogenicity , Coronavirus Infections/therapy , Coronavirus Infections/virology , Pneumonia, Viral/therapy , Pneumonia, Viral/virology , Zoonoses/therapy , Zoonoses/virology , Animals , COVID-19 , China/epidemiology , Coronavirus Infections/epidemiology , Coronavirus Infections/pathology , Disease Outbreaks , Genetic Variation , Genome, Viral/genetics , Humans , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/pathology , SARS-CoV-2 , Zoonoses/epidemiology , Zoonoses/pathology
SELECTION OF CITATIONS
SEARCH DETAIL